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1. Introduction

The bane of Lagrangian hydrodynamics calculations in multi-dimensions is the appearance of vorticity that
causes tangling of the mesh and consequent run termination. This vorticity may be numerical or physical in
origin, and is in addition to the spurious ‘‘hourglass’’ modes associated with quadrilateral or hexahedral zones
that in pure form have both zero curl and divergence associated with their velocity field.

The purpose of this note is to introduce a form of vorticity damping, based on a previously published edge-
centered artificial viscosity [1], that extends the runtime and range of calculations over which a pure Lagrang-
ian code can compute. Since the explicit inclusion of an artificial viscosity into the fluid equations is often
referred to as the ‘‘q term’’, we denote this new term as the ‘‘curl-q’’, because it is a function of the curl of
the velocity field in a zone. It is formulated in the context of the ‘‘discrete, compatible formulation of Lagrang-
ian hydrodynamics’’ [2,3]. This employs a staggered placement of variables in space (velocity and position at
nodes, with density and stresses in zones), but a predictor/corrector time integration scheme so that all vari-
ables are known at the same time level, allowing total energy to be exactly conserved [2]. This new ‘‘curl-q’’
does not resolve shock waves and is always to be utilized with an artificial viscosity that performs this task. In
order to set the stage for the introduction of the new curl-q force, the edge-centered artificial viscosity given in
[1] is briefly reviewed in a slightly simplified form; after this the curl-q force is formulated as an analogy to this
edge-centered artificial viscosity. Numerical results are given in both 2D and 3D that display its effectiveness.
In particular, results are contrasted between this new term and a recently published tensor artificial viscosity
[4]. It is shown that these two forms give quite similar results in 2D. We end with a brief discussion concerning
the validity of the use of this type of numerical device.

In Fig. 1 is shown a quadrilateral zone with its defining points, i = 1–4, and associated median mesh vectors
~Si. These vectors point in the indicated direction and have a magnitude of the surface area that lies between
their defining points in 2D or in 3D [2,5]. In terms of the median mesh vector~S1, the force exerted by the edge-
centered artificial viscosity between points ‘‘1’’ and ‘‘2’’ from zone ‘‘z’’ is given by
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Fig. 1. Quadrilateral zone z: dotted interior lines delineate triangular subzones (gray), dashed lines form the median mesh with normal
vectors ~S1; ~S2; ~S3; ~S4.
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where the various terms are defined as follows: qz and cs,z are the density and speed of sound in zone ‘‘z’’;
D~v21 �~v2 �~v1 is the difference in velocity along the edge ‘‘21’’ defined by points ‘‘1’’ and ‘‘2’’, from which
are defined its magnitude Dv21 � jD~v21j, and its direction dDv21 � D~v21=Dv21; the limiter function w21 is given
in [1] and turns this force off for situations in which the velocity difference with respect to the edge direction
is a linear function of the local coordinates; c1 is a simple coefficient that is generally set to unity. This edge
force is applied to points ‘‘1’’ and ‘‘2’’, with plus and minus signs, according to the compression switch
½D~v21 �~S21�; for the given definition of D~v21 and the orientation of the~S1 vector in Fig. 1, compression is defined

for ½D~v21 �~S1� > 0. Considering a frame of reference where~v1 ¼ 0,~f
visc

21 is then applied to point ‘‘1’’ with a ‘‘+’’

sign, and to point ‘‘2’’ with a ‘‘�’’ sign in order to ensure that this term acts in a dissipative manner [1]. If
½D~v21 �~S1� < 0, then ~f

visc

21 ¼ 0. If the quantity in square brackets is summed over all edges of a zone and this
sum is then divided by the zone volume, one obtains the negative divergence of the velocity field as defined
by finite volume differencing: namely, ðr �~vÞz ¼ �

P
eD~ve �~Se=V z, where ‘‘e’’ ranges over all edges of the given

zone ‘‘z’’, and Vz is its volume. The work performed by Eq. (1.1), and all other forces in the discrete, compat-
ible formulation of Lagrangian hydrodynamics, is given by the negative dot product of the particular force
with the displacement in a timestep of the point that this force acts upon [2,3].

To correctly specify an effective sound speed with respect to the edge ‘‘21’’ for use in determining the CFL
number for timestep determination, a sound speed ‘‘cq,21’’ is defined by c2

q;21 � c1ð1� w21Þðcs;zDv21 þ Dv2
21Þ; the

effective edge sound speed is then defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

s;z þ c2
q;21

q
. What has been done is to define an effective edge

sound speed in the presence of dissipation that resembles the magnitude of the largest characteristic speed
along an edge in 1D in the Lagrangian frame, which is (cs,z + Dv21). The CFL condition sets the timestep
by requiring that this characteristic speed be resolved for all edges of all zones in the computational domain.

2. Curl-q force specification

The first attempt at turning Eq. (1.1) into a vorticity damping form of an artificial viscosity is to change the
dot product in the compression switch into a cross product, obtaining ½D~v21 �~S1�. However, this quantity is a
vector, and what is needed is an appropriate scalar. In order to construct a scalar the magnitude of D~v21 is
separately factored out of this term and rewritten as a vector l21;?~xz, where ~xz �

P
eD~ve �~Se=V z is the finite

volume difference form of the curl of the velocity field in zone ‘‘z’’, and l21,^ is a length scale along edge ‘‘21’’
that is defined as l21;? � jdDv21 �~l21j;~l21 is the vector distance between points ‘‘1’’ and ‘‘2’’ of edge ‘‘21’’. Now a
dot product can be formed between ~xz and the remaining factor, ðdDv21 �~S1Þ, to obtain the desired scalar.
Assembling these ‘‘postulates’’ results in our form for the ‘‘curl-q’’ force as
~f
curl-q

21 ¼ c1ð1� w2
21Þqzðcs;z þ Dv21Þ½l21;?~xz � ðdDv21 �~S1Þ�dDv21 . ð2:1Þ
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Note that this force is applied to grid points ‘‘1’’ and ‘‘2’’ with the same signs as that of the artificial viscosity

force of Eq. (1.1). Also, if the term in square brackets is negative, ~f
curl-q

21 ¼ 0, as required for it to act in a dis-
sipative manner. Thus, all of the properties of the artificial viscosity that apply to Eq. (1.1), as enumerated in
Ref. [1], are automatically transferred to the above definition of the curl-q force. In particular, this force turns
off for rigid rotation due to the limiter function, and for grid-aligned flow because the lever arm l21,^ is then
zero. Because of this latter fact the limiter function has been weakened somewhat in Eq. (2.1) by using w2

21 in
place of w21 itself. This is a rather minor modification that allows us to run all test problems with the coeffi-
cient c1 = 1.0 instead of somewhat larger values in certain cases. Also, to prevent numerical noise l21,^ is set to
zero if l21;?=j~l21j < 10�3. Just as for the artificial viscosity force, the curl-q force contributes an effective sound
speed along the given edge that is added to the sum of the squares of the zone sound speed and the artificial
viscosity c2

q;21 for timestep determination, as discussed previously. The square of the effective curl-q force
sound speed is given simply by inspection of Eq. (2.1) as c1ð1� w2

21Þðcs;z þ Dv21Þl21;?j~xzj.
The above form for the force is stated directly without reference to any term in a set of PDE�s. That this is

possible is a consequence of the discrete compatible form of Lagrangian hydrodynamics in that the discrete
finite-volume description that it utilizes is more fundamental than the underlying continuum equations. For
edge forces such as those given in Eqs. (1.1), (2.1), there exists no direct continuum limit, but only a loose anal-
ogy to terms in a differential equation. For the edge-centered artificial viscosity of Eq. (1.1), this analogy yields
the term q ” q(cs + Dv)Dv in a zone ‘‘z’’, which in 1D allows one to insert P! P + q into all terms that contain
the pressure ‘‘P’’. For the curl-q force of Eq. (2.2) such an analogy is more difficult to justify since ~xz ¼ 0 in
1D, and this force vanishes. However, keeping this fact in mind one can still loosely make the analogy that the
simple scalar form of the artificial viscosity ascribed above to Eq. (1.1) becomes
Fig. 2.
distors
qzðcs;z þ ðDvÞzÞðDvÞz ! qzðcs;z þ jðr �~vÞzjl?Þl?jðr �~vÞzj. ð2:2Þ

In this equation ‘‘l^’’ is to be interpreted as some average length that is normal to Dv taken over all zone edges.
Then this term augments the pressure ‘‘P’’, subject to the limiter and force on/off switch, as does the usual
artificial viscosity.

3. Numerical results and discussion

Two well-known test problems are utilized to demonstrate the effectiveness of the new curl-q vorticity
damping mechanism. These are Saltzman�s piston [6], and Noh�s problem [7], computed in both 2D and
3D Cartesian geometry. In the 2D case results of the curl-q force, in conjunction with the edge-centered arti-
ficial viscosity, are compared to a recently published ‘‘tensor’’ form of the artificial viscosity [4]. Unlike the
edge-centered form, this tensor artificial viscosity contains zone information, and thus reduces the dependence
of the solution on the relation of the grid to the flow direction. These test problems have a c = 5/3 ideal gas law
equation of state; they are run with all artificial viscosity coefficients, as well as ‘‘c1’’ in Eq. (2.1), set to unity.
Anti-hourglass subzone pressure forces as described in [8], with a ‘‘merit factor’’ of unity, are also utilized for
all simulations. Modifications to the standard setups referenced above are indicated; comparisons in 2D are
made within the same computer code [9].

We begin with the standard setup for the Saltzman piston problem in 2D Cartesian geometry that has
been elongated by an amount of 3:1 in the shock wave (or driving piston, from left to right with unit velocity)
X
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Saltzmann piston in 2D – aspect ratio 3:1 – edge viscosity without curl damping, mesh at t = 0.6 before failure due to severe grid
ion.



Fig. 3. Saltzmann piston in 2D – aspect ratio 3:1 – mesh and density. (Top) Edge viscosity with curl-q damping at t = 0.8. (Bottom)
Tensor viscosity at t = 0.8.
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direction. The result shown in Fig. 2 is the grid at time t = 0.6 without curl-q forces using the edge-centered
artificial viscosity. The code fails due to severe grid distortion shortly after this time.

Results with the same initial and boundary conditions are given in the top and bottom parts of Fig. 3 at the
final time of t = 0.8 for the edge-centered artificial viscosity with curl-q forces, and with the tensor artificial
viscosity, respectively. At this time the shock wave has reflected from the fixed wall on the right side of the
figure and is heading back towards the piston. Both of these cases show little grid distortion due to unphysical
vorticity generation. These results show that the tensor artificial viscosity performs substantial damping of the
unphysical vorticity that would otherwise be generated, and thus acts much like the curl-q damping force. If
the grid is further elongated in the shock direction both the edge-centered artificial viscosity with curl-q force,
and the tensor artificial viscosity, will fail; the former at about 4:1 aspect ratio, the latter at about 5:1. This is
expected since as one further elongates the grid, pressure gradients in the ignorable vertical direction become
larger, eventually leading to grid distortion and failure of the calculation. One can make modifications to
increase the aspect ratio at which this failure occurs, but these can lead to non-positive heating of the artificial
viscosity and curl-q forces that is unacceptable. Finally, if this problem is run with the grid highly elongated
(104:1) in the ignorable, vertical direction as in [8], the net vorticity is small and the curl-q force has no dis-
cernable effect; in this case subzone, anti-hourglass forces are needed to obtain quality results.

Next, results are displayed for the Noh problem in 2D Cartesian geometry with initially square zones,
50 · 50, on a unit domain in both ‘‘x’’ and ‘‘y’’ directions. The initial velocity is minus one in the radial direc-
tion for all points, but zero at the (0, 0) origin; a shock propagates outward from this point. Fig. 4 shows the
grid and density at time t = 0.6 for three cases: part (a) gives the result for the edge-centered artificial viscosity
without curl-q forces; part (b) is with curl-q forces added, and part (c) is with the tensor artificial viscosity
alone. The latter two results are similiar, again showing that the tensor artificial viscosity damps unphysical
vorticity much as the curl-q force does. The large jets seen in part (a) without curl-q damping can be thought
of as arising from ‘‘false’’ vorticity present in the initial conditions using a square grid. The Noh problem is
irrotational in its initial conditions, but on a square grid, and using our finite-volume formulas to compute the
curl of the velocity field in the zone, one finds zero curl only on the 45� line; the curl of the velocity field



Fig. 4. Noh problem, 2D Cartesian geometry – mesh and density at time t = 0.6, the exact radius of the shock wave is r = 0.2. (a) Edge
viscosity without curl damping, 1422 time steps. (b) Edge viscosity with curl damping, 606 time steps. (c) Tensor viscosity, 423 time steps.

Fig. 5. Extended Saltzmann problem, 3D Cartesian geometry, aspect ratio 2:1 – edge viscosity – density and mesh at time t . 0.3, density
behind shock should be 4.0. (a) Without curl-q damping; fails due to mesh tangling soon after this time. (b) With curl-q damping; code
runs to about t = 0.7 and then fails due to mesh tangling.
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increases with magnitude and with opposite signs as one approaches the horizontal and vertical axes. The lim-
iter functions keep the artificial viscosity and the curl-q force off until the shock wave propagates past any
given point. Then, without the curl-q force or the tensor artificial viscosity, strong unphysical vorticity gener-
ation is seen to occur along the axes.

In 3D we show results with the extended version of the Saltzman piston problem as previously defined in [5].
This extended problem is completely 3D in its setup; the Saltzman skewing of the grid is made to change parity
uniformly in the third dimension. This grid is compressed by a 2:1 aspect ratio in the non-shock directions so that
zones are elongated by this amount in the shock direction. Fig. 5 shows the grid and density profile at time t = 0.3
for two cases: part (a) is without the curl-q force; this calculation fails shortly after this time due to unphysical grid
distortion; part (b) is with the curl-q force at the same time and shows a quite satisfactory result. This latter sim-
ulation will fail later (at about t = 0.7) due to grid distortion about the vertical plane with the high (red) density
spot seen in the top-middle of part (b) of this figure. Lagrangian codes can always be broken, and no amount of
curl smoothing or other devices guarantees run to completion, much less correct answers.
Fig. 6. Spherical Noh problem, 3D Cartesian geometry, one octant, 503 cubic initial grid – edge viscosity – corner is the origin. (a)
Without curl-q damping, fails at time t = 0.5 due to mesh tangling at 1196 time steps. Specific internal energy is shown for contrast, density
is unphysical due to the severe mesh distortion. (b) With curl-q damping at time t = 0.6, 279 time steps. Variable plotted is density, which
matches the exact solution (shock wave at radius r = 0.2, density of 64, red color). Wall heating error is clearly visible.
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Last, the Noh problem is calculated using initially cubic zones in 3D Cartesian geometry, (50 · 50 · 50) for
an octant. Fig. 6 has two parts: part (a) gives the grid at time t = 0.5 when the calculation fails due to excessive
grid distortion without using any curl-q damping force. Jets along the three coordinate axes dominate the solu-
tion, which is colored using specific internal energy to obtain contrast; density has become unphysical due to
zone collapse. Part (b) of this figure gives the result showing density at the final time t = 0.6 with curl-q forces.
This latter result is of high quality for this problem; the ubiquitous wall-heating error is clearly visible, other-
wise this is the correct solution for the 3D spherical Noh problem – a density of 64 behind the shock at a major
radius of 0.2 at time t = 0.6.

In summary, the Lagrangian formulation of hydrodynamics produces reliable results only for irrotational,
compressible, deterministic fluid flow. These conditions are strictly valid only in one-dimension. However, in
multi-dimensions this may be the case to a substantial degree, particularly when the initial conditions of the
simulation are homomorphic to one-dimensional geometry. Use of a vorticity damping mechanism as intro-
duced herein is justified not only to remove unphysical vorticity, but also for calculations where physical vor-
ticity is present but not dominant. In the latter case the solution may be incorrect in certain regions of the
problem, but global, spatially integrated quantities may still remain substantially correct. If it is these quan-
tities that are of principal interest, then Lagrangian frame calculations are appropriate. However, it is neces-
sary to keep such calculations running to completion in order to assess these results. The ‘‘curl-q’’ term
introduced herein affords a very simple and effective way to sustain Lagrangian calculations under such
circumstances.
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